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Annalysis of Microstrip Resonators

TATSUO ITOH, SENIOR MEMBER, IEEE

Abstract—An accurate and efficient method was developed for
computing the resonant frequencies of microstrip resonators. The
formulation of the problem was carried out rigorously using the full-
wave analysis rather than the quasi-static approximation. The charac-
teristic equation was derived using Galerkin’s method applied in
the Fourier transform domain.

The accuracy of the method has been proven by comparing the
numerical results with the experimental data. Numerical data have
been provided for the microstrip resonators with different structural
parameters.

Finally, the results for microstrip resonators have been used for
predicting the end effect at the open end of microstrip structures.

I. INTRODUCTION

HE microstrip and disk resonators are useful inte-

grated circuit components at microwave and milli-
meter-wave frequencies for building filters, oscillators, ete.
[17]. The analysis of such structures, however, has been
undertaken with various approximations [27]. Since the
design formulas so obtained are not very accurate, the
designers of such circuit components are often forced to
use cut-and-try methods to obtain desired resonant char-
acteristics. Recently, some attempts have been made to
develop more rigorous methods of analysis so that better
correlation between computed and experimentally ob-
tained resonant frequency data is attained [3], [4].
These methods are, however, still based on the quasi-static
approximation which is not valid at higher frequencies.
Hence there is a definite need for an accurate full-wave
analysis method for microstrip resonator structures. By
full-wave analysis we mean the process of rigorously
solving the electromagnetic (EM) boundary value prob-
lem by retaining all the field components.

In this paper, the boundary value problem associated
with the microstrip resonator structure has been attacked
in a rigorous manner based on the full-wave analysis. The
solution of the problem has been derived using a new
efficient method. Specifically, the derivation of the charac-
teristic equation for resonant frequencies is carried out
using Galerkin’s technique applied in the spectral or
Fourier transform domain instead of the space domain.
The resonant frequencies are obtained by numerically
solving the characteristic equation. The details of the
analysis method will appear in Section II of this paper.

In Section III, the accuracy of the solution is demon-
strated by comparing the numerical results with the
experimental data. A number of numerical results are also
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presented for microstrip resonators with various structural
parameters. In Section IV, the numerical data for micro-
strip resonators are used for predicting the end effect at
the open end of the microstrip structures. Since the infor-
mation so obtained is based on the full-wave analysis, it
is believed to be useful for the design of microwave inte-
grated circuit structures at higher frequencies at which
reliability of the information on end effects derived from
the conventional quasi-static approach [5]-[7] may be
questionable.

II. METHOD OF ANALYSIS

The microstrip resonator to be analyzed is shown in
Fig. 1. A rectangular strip of width 2w and length 21 is
placed on the substrate which is, in turn, backed by a
ground plane. The sides and the top of the structure are
covered with shielding walls. Thus the entire structure is
considered to be the microstrip resonator located in a
partially filled waveguide. It is assumed that the thickness
of the strip is negligible and that all the media and con-
ductors are lossless. The shielding waveguide and the
substrate are assumed to extend to z = 4 . For simplic-
ity, the strip is assumed to be symmetrically located,
although the present method of analysis can be easily
extended to more general cases. Also, for simplicity of
numerical computation and for practical consideration,
the operating frequency is assumed to be below cutoff of
the shielding waveguide partially filled with substrate
material, although the formulation process is valid for any
frequency range.

The fields existing in the structure shown in Fig. 1 are
the superposition of TE (to z) and TM (to z) fields, and
they can be expressed in terms of two types of scalar
potentials ¢(z,y,2) and ¥(x,y,2). For instance,

E.i(xy,2) = kip: + 3%i/92? (1a)
H..(z,y,2) = k2y; + 9%./322 (1b)
Eoi(zyye) = 8%:/0x 02 — jopi(0yi/dy) (1c)
H.i(2,y,2) = jwe(9¢i/dy) + 9%/ 9z 2 (1d)

where ¢ = 1, 2 designates the substrate or the air region,
ky = (ﬁrur)1/2ko

€1 = €€p

]\72 = IC() = w(éoyo) 1/2

€ = €

M1 = Helo M2 = Mo

w 1s the operating frequency and ¢ and po are the free-

space permittivity and permeability, respectively.
Although it is possible to derive a set of coupled homo-

geneous integral equations for the boundary value problem
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Fig. 1. End and top view of microstrip resonator.

associated with the present structure using (1) as well as
all the boundary conditions, and to numerically solve these
equations for the resonant frequency, this approach has
been avoided in this paper. The reason is that the
solution of such integral equations is numerically pro-
hibitively difficult due mainly to the convolution integrals
involvihg slowly convergent Green’s functions. Instead,
a new method is developed in which the boundary value
problem associated with the structure in Fig. 1 is solved
in the Fourier transform or the spectral domain. The
original form of the spectral domain analysis was first
developed by Itoh and Mittra and was successfully applied
to a number of problems in microwave integrated circuit
structures [87, [9]. The original version i extended in
this paper and applied to the microstrip resonator struc-
ture. In what follows, each step to derive the characteristic
equation will be deseribed. As will be seen later, the
method is numerically quite efficient.

The first step is to transform the quantities in (1) into
the spectral domain via the Fourier transform:

siiny8) = [ de [ debi(aye) exp (jhar) exp (i82)

(2a)

Bnd) = [ de [ dopuey2) exp () exo (o),

(2b)

where 8 is the Fourier transform variable. k, is the discrete
transform variable defined by k, = (n — 1/2)x/a for E,
even —H, odd (in z) modes and k. = nr/a for E, odd
— H . even (in ) modes. The transforms of field quantities
are now

n = 1,2)...

Eﬂ(my,ﬁ) = (b — B s (3a)
H.(nyB) = (k& — B): (3b)
_ . 2

Boi(n,y,8) = —kuBdi — Jwﬂia—‘z (3c)
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Rni) = joes 5 = kol (34)
The transforms of scalar potentials satisfy
d2
P ¢ — v =0 (4a)
a . .
i i —vi=0 (4b)
where
72 =k + B — eprkd? (5a)
v = ka2 + B2 — ke (5b)

In order that E, and E, and, hence, &, and E, are zero at
y = 0 and y = d + h, the solutions of (4) are

é1 = A,(B) sinh vy (6a)
J1 = Bn(8) cosh yiy , (6b)
¢2 = Cn(B) sinh vo(d + b — y) (6¢)
¥2 = D,(B) coshya(d + b — y) (6d)

where A,, By, Cn, and D, are unknowns.
The second step is to apply the continuity conditions
at the interface y = d in the spectral domain

E.(ndpB) = E.(n,d,pB) (7a)
Fa(nd8) = Ba(ndp) (7b)
Aa(nd,B) — Ha(ndg) = J.(n8) (7c)
Aandp) — Ba(ndp) = J.(n  (7d)

where J,(n,8) and J.(n,8) are the Fourier transforms of
unknown strip-current components

Jx(x,Z) = Hzl(xydyz) - sz(fb,d,Z)
J.(2,2) = Hu(x,dz) — Hpolx,d2)
where | z| < wand | z| < I, and J, and J, are defined by

~ 'l w ~
T.(ng) = f dz / daT (2,2) exp (s + jB2)  (8a)
-1 —w

l w N
T = [ de [ deli(n2) exp (has + 8. (8D)
—1 —w

When (6) and (3) are substituted into (7), we obtain
linear algebraic equations for unknown coefficients A,,
Bn, C», and D,. When one solves these equations, the
coefficients are expressed in terms of unknowns J,(n,8)
and J,(n,8).

The third step is to impose the final boundary conditions

E.(z,dz2) = E.(2,d,2) =0, |z <w, |z|<lI
in the spectral domain. To this end, let us define

o, Jzl<w, |zj<l

otherwise (9a)
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0, e <w, |z]<!

E.(z,dz2) = (o)

where » and » are unknown. Substituting (3) and (6) into
the Fourier transforms of (9), we obtain another set of
algebraic relations between the transformed field quan-
tities and unknowns A, B,, C., and D,. Now, A,, B,, C,,
and D, are eliminated from this set of relations using the
relations derived in the second step. After some mathe-
matical manipulations, we obtain

G (n,8,k0) T (n,8) + Gra(21,8,k0)T (n,8) = E.(n,8) (10a)
Gar (8,0 To(n,8) + Gaa(n,B.k0) T (n,8) = E.(n,) (10D)
where
Gu = Gun = k.8(v2tanh voh + py:1tanh yid) /det  (11a)
Gro = [(emko® — 82)v2 tanhyoh + p. (ke — 8211

-tanh vid]/det (11b)
Gn = [(emhke — ka?)vatanh yoh + p, (ke — k) ma

-tanh v,d]/det  (11c)

v(z,2), otherwise

det = (v1tanh vid + ey2 tanh vsh) (1 coth yid
, + wy2 coth yoh)  (11d)
E.(n,8) = K.E.(n,B) (12a)
E.(n,8) = KB, (n,8). (12b)

In (12), K, and K; are some known constants, while B,
and E, are Fourier transforms of (9) and hence unknown.
The quantities Gy, Ga, Gs1, and Gos are actually the Fourier
transforms of dyadic Green’s function components.

Note that (10) are algebraic equations as opposed to the
coupled convolution-type integral equations which usually
appear in the conventional space-domain analyses [10].
Notice also that (10) contains a total of four unknowns
Joy J 2, B, and E,. However, it is possible by the applica-
tion of Galerkin’s procedure to eliminate the two latter
unknowns %, and E, and to solve ( 10) for J, and J, only.

To this end, the unknowns J, and J, are first expressed
in terms of known basis functions J,. and J,, with un-
known coefficients c,, and d,,.

Tomi8) = 5 ondum(nsf) (13a)
S~ N —~
JZ(n:ﬂ) = Z dezrn(’n’B) . (13b)

The basis functions J,,, and J,,, must be chosen to be the
Fourier transforms of space-domain functions J,.(z,z)
and J.»(2,2) which have finite support, viz., which are
zero except for the region |z | < w and }z| < I. Now,
substituting (13) into (10) and taking inner products of
the resulting equations with the basis functions J,; and
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J i for different values of 4, we obtain

M N
Z Kim(l'l)cm + Z Kim(1'2)dm = 0) 1= 1J2J' * ”N

m=1 m=1
(14a)
M N
2 Kin®V¢m + 3 Kin®2d, = 0, 1 =12,.-- M
m=1 m=1
(14b)

where from the definition of the inner products associated
with the Fourier transform defined by (2), the matrix
elements are

o0

Kin® (ko) = 3 f I ::(n,8) Guy (1,8,k0) T om(n,8) dB
0

(15)
Kin® () = g / "k (1,8) Grs (1, ) (,8) B
(15b)
Kon®D (ko) = g f Tt (1,8) G (1,8,0) T e (n,6) B
(15¢)
K in® (ko) = z=: fo " ei(1,8) G (1,8,0) T () B,
(15d)

The right-hand sides of (10) can be eliminated in Galer-
kin’s process via the application of Parseval’s relation,
because the inverse transforms of E,, E, and J,, J., ie.,
E.; E, and J., J,, are nonzero only in the complementary
regions in the (#,2) plane at.y = d.

The simultaneous equations (14) are now solved for the
wavenumber ko by setting the determinant of the coeffi-
cient matrix equal to zero and by seeking the root of the
resulting characteristic equation. The resonant frequency
of the microstrip resonator shown in Fig. 1 is derived from
the obtained value of k.

The accuracy of the solution can be systematically
improved by increasing the number of basis functions
(M + N) and by solving larger size matrix equations.
However, if the first few basis functions are chosen so as
to approximate the actual unknown current distribution
reasonably well, the necessary size of the matrix can be
held small for a given accuracy of the solution, resulting
in the numerical efficiency. Hence the choice of basis func-
tions is important from the numerical point of view.

In actual computations for the dominant mode, J.; and
J .1 have been chosen to be

Ja(n,8) = Ji(n)J2(8)
jzl(nns) = j3(n)j4(6)

(16a)
(16b)
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where
-~ _ 2sin (hw) .
Ji(n) = o hon)? {cos (kyw)
2sin (kaw)  2[1 — cos (haw) ]}
T (fent)?
- __—mcos (Bl)
S8 = Tane = (2
- _ 2xsin (o)
Js(n) = _(kr_n—@U)z —
Tun) = cos (BD) _ sin (Bl)

Al (8h)*

Note that (16) are the Fourier transforms of J.a(2,2) =
Ji(x)J2(2) and J a(2,2) = J3(x)Js(z) where the functional
forms of Ji—J,4 are given in Fig. 2. Higher order J.. and
J . may be chosen in a similar manner. It may be worth-
while to mention that the form of J; is identical to the
one used by Denlinger [117] for computing the dispersion
characteristics of infinitely long microstrip lines.

It must be pointed out that, although the numerical
computations carried out in this paper are for the domi-
nant resonance mode only, the method developed in this
paper is equally well applicable to the higher order modes.
For computing such higher order resonances, it is only
necessary to use the basis functions appropriate for the
specific mode of interest. For instance, for the resonance
of the second order in the z direction, cos (wz/l) /1 may be
used instead of J, shown in Fig. 2.

Before ending this section, some of the unique features
of the present method will be summarized.

1) The spectral method is numerically simpler and
more efficient than many space-domain methods, pri-
marily because in the present method solutions are
extracted from algebraic equations rather than from
coupled integral equations of convolution type. Further-
more, the Fourier transforms of Green’s functions Gy,
Ghz, Go, and G in (10) have simple closed forms. On the
other hand, in the space-domain methods, the Green’s
functions are inverse Fourier transforms of Gy, ete., and
hence are numerically much more difficuit to evaluate
[127. For instance

- 2 3
Gll(x - x,7y7y,)z - Z,) ‘1/=”'=d = ;r—(; Z exp (_]kﬂ l r—2 I)

n=1

_/‘” Gu(n,g8) exp (—jB |z —2'|) dB.
0

2) Although numerical ecomputation of K;,@V, ete.,
requires the evaluation of the infinite summations of
infinite integrals, as shown in (15), they can be efficiently
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Fig. 2. Forms of assumed current distributions.

obtained after truncating these infinite summations and
integrals at some finite points, because the integrands in
(15) decrease quickly. For instance, for J. and J,; in
(16), they decay as fast as (k.w)~* and (BI)~*.

3) As pointed out earlier, the solution in the present
method can be systematically improved by increasing the
number of basis functions and solving a larger size matrix.

4) The physical nature of the field corresponding to
each mode is directly incorporated in the process of solu-
tion via the appropriate choice of basis functions.

III. RESULTS AND DISCUSSIONS

Before presenting the numerical results and experi-
mental data, it should be noted that the structures used
for both numerical computations and experiments through-
out the rest of this paper are scale models of millimeter-
wave integrated circuits. In practice, after the circuit is
designed and tested at low frequencies, a miniature struc-
ture for millimeter-wave integrated circuits may be ob-
tained by reducing all the dimensions of the circuit struc-
ture while keeping the ratios of all the dimensions to the
wavelength constant. The value of the relative dielectric
constant of the substrate is assumed to be unchanged in
these two frequency ranges. Since the field distributions
in both the scale models and the actual millimeter-wave
circuits constructed in this manner are the same, we are
solving the field problem of millimeter-wave integrated
circuit structures even though the actual operating fre-
quencies are in the UHF range.

Numerical computations have been carried out for the
resonant frequencies of microstrip resonators using a
CDC G-20 computer which is about ten times slower than
the IBM 360/75. Each matrix element in (14) such as
K :»®Y has been computed accurately up to five significant
digits or better. To test the convergence of the present
method, the resonant frequency has been calculated for
two choices of matrix size: 1) N =1, M =0; 2) N =
M = 1. In case 1), only the axial component J ., of the
resonator current is retained. Fig. 3 shows some typical
results obtained by choices 1) and 2). It is clear that the
two sets of values are very close except for very wide
resonators in which the J, component is physically ex-
pected to make more significant contributions. Some test
calculations that include higher order basis functions
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TABLE 1

ResoNaNT FREQUENCY VERsUS LoADED @ (2] = 10-cm REsONATOR)

Loaded Q Resonant Frequency (MHz)
37 708.0
106 730.6
466 742.3
688 743.0
1509 746.0
1735 746.4
2334 747.0
10000 753.0*
Present theory 752.4

Note:

8

8

* is the extrapolated value.
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Fig. 3. Comparison of resonant frequencies derived from N = 1,
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Fig. 4. Comparison of the results from the present methods with
those obtained from experiments and other methods.

(N = M = 2) gave so small a difference from the V =
M = 1 case that the results were almost indistinguishable
on the graphical figures. In the rest of this paper only the
results from the N = M = 1 case will be used.

Fig. 4 shows the resonant frequency versus the length
of the resonator. Other theoretical results are based on the
open-ended quasi-TEM as well as the parallel-plate trans-
mission line models. The latter is of width 2w and thick-
ness d, has magnetic side walls, and is filled with a medium
of dielectric constant e,. In both of these approximation
models, the resonant frequency was computed from the
length of 2(l + Al) where Al = 0.3d is the hypothetical
extension of the line to account for the end effect [7].

The experiments' have been conducted using the strip
of thickness 0.254 mm that is negligibly small compared
to other dimensions. The loaded @ of the resonant circuit
was maintained around 1450. As seen from Fig. 4, the
agreement between the experimental data and the results
computed by the present theory is extremely good. In

1The author would like to thank W. W. Snell, Jr., of Bell Labora-
tories, Holmdel, New Jersey, for furnishing the experimental data.
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Fig. 5. Resonant frequencies of microstrip resonators with various
structural parameters.

order to study the effect of the loaded @ of the circuit on
the resonant frequency measurement, one of the resonators
used in Fig. 4 was loaded differently and the resonant fre-
quency was measured as a function of loaded Q. The
results summarized in Table I show that the numerical
results are even closer to the resonant frequency of an
extremely loosely coupled resonator—in fact, the fre-
quency of an essentially uncoupled resonator.

Fig. 5 shows the resonant frequencies of microstrip
resonators with various structural parameters. As ex-
pected, the resonant frequency is lower for the resonator
of the same dimension but with the substrate of higher
dielectric constant.

Finally, the typical computation time using the N =
M = 1 case was about 200 s/structure although the time
is longer for narrower resonators.

IV. END EFFECT

To date, the end effect of the open-ended microstrip
lines has been studied with the quasi-static approximation
[53-7]. However, at higher frequencies, say millimeter-
wave regions, the quasi-static approximation may- not be
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accurate. In this section, the resonant frequency data of
the microstrip resonators have been used for estimating the
end effect at the open ends of microstrip lines using the
full-wave theory.

First, compute the dispersion characteristics [137], [14]
of the infinitely long microstrip line with the same cross-
sectional structure as the microstrip resonator. From the
dispersion relation the guide wavelength A, is derived at
the resonant frequency f, of the microstrip resonator of
length 21.

Now, consider the hypothetical open-circuited micro-
strip resonator whose structure is identical to Fig. 1
except that the length is 21 instead of 21. The hypothetical
length 21 is determined from the resonant condition of the
open-circuited line 2] = Ag/2. The hypothetical extension
of the microstrip line, which accounts for the end effect, is
given by Al =1 — 1.

Fig. 6 shows that the values of Al are considerably
smaller than those computed by the quasi-static approxi-
mation. It is conjectured that these smaller values may be
caused by the reduction of the capacitive suseeptance due
to the lumped inductance associated with the disturbance
in the current components at the strip ends. Fig. 7 shows
that when the length [ is increased, Al first decreases be-
cause of the decrease of mutual coupling between two
ends. However, when [ is further increased, Al increases.
This phenomenon occurs probably because for large ! the
resonant frequency decreases and hence the situation

051
d=127 cm
h=889 cm
a=775 cm
QUASI-STATIC (¢, =96
04
X €=382 [=10cm
-~
<
03
/’ﬁe_ﬂ‘ﬂ__—
-
02 I i | ]
[¢] 2 4 6 8
2w/d
Fig. 6. End effect versus the width of strip.
5 .
d=127 cm
h=889cm
a=775cm
w=10cm
ar T a2
3
<
3 £ :96
2 1. 1 i -
4 8 12 16 20

2 /(cm)
Fig. 7. End effect versus the length of strip.
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approaches the static limit where the Al value is much
larger, as shown in Fig. 6.

V. CONCLUSION

A new efficient method has been developed for comput-
ing the resonant frequencies of rectangular microstrip
resonators. The formulation is based on the rigorous full-
wave analysis. The characteristic equation has been
obtained via the application of Galerkin’s method in the
spectral domain. The numerical results were compared
with those derived from other theoretical and experimental
data. The agreement between the experimental results
and the data computed from the present method was
extremely good.

Further, the results for microstrip resonators have been
used for estimating the end effect of the microstrip lines.
The estimate has been compared with the values obtained
by the quasi-static theory.

Finally, it should be mentioned that the operating fre-
quency in the paper was assumed to be below cutoff of
the shielding waveguide. When this is no longer the case,
all the formulas given in this paper still hold. However,
in such situations the ““det” in (11d) possesses zeros on
the real axis in the complex 8 plane. Hence because of the
poles of Gy, etc., the matrix elements K@, etc., now
become complex, and the characteristic equation for the
resonant frequency is satisfied only with the complex ko.
Physically, this situation corresponds to the finite value of
resonator € due to the coupling to the waveguide modes.

It is planned in the future to obtain more data for
various structural parameters and to extend the present
method to the case where the shielding walls are removed
or the operating frequency is above waveguide cutoff.
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Analysis of Lossy Inhomogeneous Waveguides
Using Shooting Methods

R. E. McINTOSH, sENIOR MEMBER, IEEE, AND L. J. TURGEON,
STUDENT MEMBER, IEEE

Abstract—Shooting methods are used to analyze rectangular
waveguides containing inhomogeneous lossy dielectrics. The tech-
nique obtains the electromagnetic fields inside the waveguide by
solving Maxwell’s equations using trial and error procedures to match
the boundary conditions at the conducting waveguide surface. Dis-
persion and attenuation curves are obtained which show how con-
tinuous dielectric inhomogeneities and losses affect the transmission
characteristics of these waveguides.

I. INTRODUCTION

The many applications of inhomogeneously loaded waveguides in
microwave engineering has resulted in a need for methods of cal-
culating the transmission characteristics of the waves that propagate
in such waveguides. A number of solution methods have been devel-
oped to analyze such problems, most of which are numerical, since
only a few inhomogeneous cases can be solved in closed form [17].

Most of the methods developed are restricted to lossless inhomo-
geneities. Some of the earlier ones [2]-[4] treat waveguides con-
taining one or two slabs of lossless dielectric. Further developments
include Galerkin’s method and modification thereof [5], [6], analyti-
cal approximations [[7], Rayleigh-Ritz optimization [8], [1], finite
difference [97, finite element (especially helpful for arbitrary wave-
guide cross sections) [103-[12], computer iterations [137], vector
variational [14], and shooting methods [15].

Rectangular waveguides containing lossy dielectric slabs have also
been analyzed [137, (1671-[187 Perhaps one of the more elegant
papers in this area was written by Gardiol [18]. Using a matrix
formulation, he treated general waveguides containing linear, in-
homogeneous, lossy, and anisotropic slabs. In principle, his formula-~
tion is valid for solving waveguides which have any number of slabs
extending across them. However, in practice, the number of computer
operations prohibits the computation of waveguide propagation
constants (even for the isotropic case) when a large number (e.g.,
more than 25) of slabs are needed to model the medium contained
inside the waveguide. This limitation is not very important in those
situations where the medium is accurately modeled by a few step
discontinuities but it can be serious when treating certain geometries
with continuously varying media.
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Fig. 1. Rectangular inhomogeneous lossy waveguide with width a
and height b. The permittivity €(x) = €¢(x) — je"(z) is a function
of the spatial coordinate x.

In this short paper we present an approach which differs from
Gardiol’s in the technique used to solve Maxwell’s equations. We
show that the propagation characteristics of a rectangular waveguide
loaded with an isotropic, lossy, and inhomogeneous dielectric as
shown in Fig. 1 can be found by applying shooting methods directly
to the field equations. This technique has the advantage that the
permittivity does not have to be approximated by a small number
of slabs. The field components are also available for printout and
display since they are computed in determining the dispersion curves.

The complex propagation constants for an inhomogeneous rec-
tangular waveguide are obtained by solving the first-order differential
equations (Maxwell’s equations) using Hammings stable method
[197, started by a Runge-Kutta—Gill method. The ability to select
the size of the spatial increments used in the iteration procedure
further allows this technique to yield good accuracy for higher order
modes and strong inhomogeneities of the permittivity [15].

In Section IT, Maxwell’s equations are formulated appropriately
for a rectangular geometry, and a description of the solution tech-
nique is given when the inhomogeneity can be expressed as a function
of one spatial coordinate. An example is presented in Section III to
illustrate the speed and accuracy of the method.

I1. THEORY

Maxwell’s equations contain all of the necessary information to
obtain the wave propagating characteristics of waveguides. We need
only solve them inside the waveguide of width a and height b shown
in Fig. 1 subject to the appropriate boundary conditions. For one-
dimensional inhomogeneities in the z direction, the electric field



