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Abstract-An accurate and efficient method was developed for

computing the resonant frequencies of microstrip resonators. The

formulation of the problem was carried out rigorously using the full-

wave analysis rather than the quasi-static approximation. The charac-

teristic equation was derived using Galerkin’s method applied in

the Fourier transform domain.
The accuracy of the method has been proven by comparing the

numerical results with tie experimental data. Numerical data have

been provided for the microstrip resonators with different structural
parameters.

Finally, the results for microstfip resonators have beert used for
predicting the end effect at the open end of microstrip structures.

I. INTRODUCTION

THE microstrip and disk resonators are useful inte-

grated circuit components at microwave and milli-

meter-wave frequencies for building filters, oscillators, etc.

[1], The analysis of such structures, however, has been

undertaken with various approximations [2]. Since the

design formulas so obtained are not very accurate, the

designers of such circuit components are often forced to

use cut-and-try methods to obtain desired resonant char-

acteristics. Recently, some attempts have been made. to

develop more rigorous methods of analysis so that better

correlation between computed and experimentally ob-

tained resonant frequency data is attained [3], [4].

These methods are, however, still based on the quasi-static

approximation which is not valid at higher frequencies.

Hence there is a definite need for an accurate full-wave

analysis method for microstrip resonator structures. By

full-wave analysis we mean the process of rigorously

solving the electromagnetic (EM ) boundary value prob-

lem by retaini~g all the field components.

In this paper, the boundary value problem associated

with the microstrip resonator structure has been attacked

in a rigorous manner based on the full-wave analysis. The

solution of the problem has been derived using a new

efficient method. Specifically, the derivation of the cliarac-

teristic equation for resonant frequencies is carried out

using Galerkin’s technique applied in the spectral or
Fourier transform domain instead of the space domain.

The resonant frequencies are obtained by numerically

solving the characteristic equation. The details of the

analysis method will appear in Section II of this paper.
In Section III, the accuracy of the solution is demon-

strated by comparing the numerical results with the

experimental data. A number of numerical results are also
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presented for microstrip resonators with various structural

parameters. In Section IV, the numerical data for micro-

strip resonators are used for predicting the end effect at

the open end of the microstrip structures. Since the infor-

mation so obtained is based on the full-wave analysis, it

is believed to be useful for the design of microwave inte-

grated circuit structures at higher frequencies at which

reliability of the information on end effects derived from

the conventional quasi-static approach [5]–[7] may be

questionable.

II. METHOD OF ANALYSIS

The microstrip resonator to be analyzed is shown in

Fig. 1. A rectangular strip of width 2W and length 21 is

placed on the substrate which is, in turn, backed by a

ground plane. The sides and the top of the structure are

covered with shielding walls. Thus the entire structure is

considered to be the .microstrip resonator located in a

partially filled waveguide. It is assumed that the thickness

of the strip is negligible and that all the media and con-

ductors are lossless. The shielding waveguide and the

substrate are assumed to extend to z = * ~. For simplic-

ity, the strip is assumed to be symmetrically located,

although the present method of analysis can be easily

extended to more general cases. Also, for simplicity of

numerical computation and for practical consideration,

the operating frequency is assumed to be below cutoff of

the shielding waveguide partially filled with substrate

material, although the formulation process is valid for any

frequency range.

The fields existing in the structure shown in Fig. 1 are

the superposition of TE (to z) and TM (to z) fields, and

they can be expressed in terms of two types of scalar

potentials @(z,y,z) and 4 (z, Y,z). For instance,

Ezi (x,y,z) = lc~ztj~+ 824~/&2 ( la)

H,, (X,~,~) = ki21i + awi/dZ2 (lb)

Eci(3w,z) = a26Jaz a2 – j@Pi(a*Ja~) (lC)

H,;(z,g,z) = ju~t(b4i/@) + d2tjJ&z & (id)

where i = 1, 2 designates the substrate or the air region,

kl = (C.p,) I%o 1+2 = h = @(&j&J) 112

Cl = CTCIJ q = co

#l = I’J$PO lJ.2 = Wo

CJ is the operating frequency and co and JLO are the free-

space permittivit y and permeablht y, respectively.

Although it is possible to derive a set of coupled homo-

geneous integral equations for the boundary value problem
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Fig. 1. End and top view of microstrip resonator.

associated $vith the present structure using (1) as well as

all the boundary conditions, and to numerically solve these

equations for the resonant frequency, this approach has

been avoided in this paper. The reason is that the

solution of such integral equations is numerically pro-

hibitively difficult due mainly to the convolution integrals

involving slowly convergent Green’s functions. Instead,

a new method is developed, in which the boundary value

problem associated with the structure in Fig. 1 is solved

in the Fourier transform, or the spectral domain. The

original form of the spectral domain analysis w-as first

developed by Itoh and Mittra and was successfully applied

to a number of problems in microwave integrated circuit

structures [8], [d]. The original version is extended in

this paper and applied to the microstrip resonator struc-

ture. In what follows, each step to derive the characteristic

equation will be described. As will be seen later, the

method is numerically quite efficient.

The first step is to transform the quantities in (1) into

the spectral domain via the Fourier transform:

m

!/

a

qi(w,i3) = dz dz~~(z,y,z) exp ( jk.z) exp ( j$z)
—m -a

(2a)

Yi(n,y,@) = ~m dz ~a dx~;(z,y,z) exp ( jfku) exp ( j8z),
—.- Q.

‘n, = 1,2,. . . (2b)

where p is the Fourier transform variable. ~n is the discrete

transform variable defined by & = (n – 1/2) m/a for Ez

even – H. odd (in x) modes and & = n~/a for B. odd

– HZ even (in ~) modes. The transforms of field quantities

are now

17z,(n,y,p) = (lt!q – P’)+t (3a)

a.,(n,~,~) = (k,’ – p’)Ji (3b)

(3C)

The transforms of - “ “ “” “scalar potentials satlsty

:2& – yi2& = ~ (4a)

$ ii – 7i2Ji = o (4b)

In order that ~, and ~= and, hence, ~z and ~z are zero at

y = O and y = d + h, the solutions of (4) are

& = An(p) sinh 71v (6a)

;1 = ~n(~) cosh YIV (6b)

42 = C.(P) sinh w(d + h – Y) (6c)

Ij2 = lh(13) cosh 72(d + h – y) (6d)

where An, B., C., and D. are unlcnowns.

The second step is to apply the continuity conditions

at the interface y = d in the spectral domain

~.l(n,d,~) = ~.’(n,d,~) (7a)

where ~m(tt,@) and ~.(n,p) are the Fourier transforms of

unknown strip current components

Jz(Z,Z) = H,l(x,d,z) – HzZ(z,d,z)

where I x \ < w and \ z I < 1, and ~. and>. are defined by

When (6) and (3) are substituted into (7), we obtain

linear algebraic equations for unknown coefficients A ~,

Bn, C., and D.. When one solves these equations, the

coeffi~ients are expressed in terms of unknowns ~~(n,@)

and J,(n,@).

The third step is to impose the final boundary conditions

E,(z,d,z) = E.(z,d,z) = O, Izl <w, ]Zl<i

in the spectral domain. To this end, let us define

I
o, ]&\ <w, ]21<1

Eg(z,d,z) =

U(X,Z) otherwise (9a)
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I
o, Izl <w, 12]<1

E.(z,d,z) =

V(z,z), otherwise (9b)

whiweuand v are unknown. Substituting (3) and (6) into

the Fourier transforms of (9), we obtain another set of

algebraic relations between the transformed field quan-

tities and unknowns A., B%, C., and Dm. Now, A., B., C*,

afid D. are eliminated from this set of relations using the

relations derived in the second step. After some mathe-

matical manipulations, we obtain

@,,(n,p,ko)Jx(n,p) + f%2(ti,&ko)7@,@ = ~z(%iv

&(n,B,k,)Jz(n,@) + c22(n,&ko)J*(7@) = ~.(%~)

where

~11 = & = &fl (7, tanh ~ih + p,-yl tanh ~ld) /det

& = [ (crp,?c,, – 13’)~, tanh~,h + p, (k02 – L?’)71

. tanh yld]/det

& = [ (C,prk, 2 _ ~~,) y, ~anh y’h + IA,(~02 — ‘n2) 71

. tanh @]/det

det = (~1 tanh ~ld + 6,72 tanh y~h) (-yl coth yld

+ 1.L,72 coth -@)

Zz(n,p) = KJ?.(?ZJ3)

E,(n,f3) = K.EZ(7LJ3) .

(lOa)

(lOb)

(ha)

(llb)

(llC)

(lld)

(12a)

(12b)

In (12), K, and K& are some known constants, while ~,

and EZ are Fourier transforms of (9) and hence unknovvn.

The quantities &, (712,(721,and QZ2are actually the Fourier

transforms of dyadic Green’s function components.

Note that (10) are algebraic equations as opposed to the

coupled convolution-type integral equations which usually

appear in the conventional space-domain analyses [10].

Notice also that (10) contains a total of four unknowns

~,, ~., l?z, and fiz. However, it is possible by the applica-
tion of Galerkin’s procedure to eliminate the two latter

unkhowns ~. and l?. and to solve (10) for ~= and ~, only.

To this end, the unknowns ~. and ~. are first expressed

in terms of known basis functions ~,% and ~z~ with un-

known coefficients cm and d~.

J.(n;@) = ; cm~.m(n,~) (13a)
m=l

~,(n,@) = : d~~,n(n,~) . ( 13b)
m=1

The basis functions ~.~ and ~,~ must be chosen to be the
Fourier transforms of space-domain functions J=m(.z,z)

and J.m ( X,Z) which have finite support, viz., which are

zero except for the region I z I < w and 1-z / < 1. Now,

substituting (13) into (10) and taking inner products of

the resulting equations with the basis functions ~Z~ and

~zi for different values of i, we obtain

; Kim(lJ)cm + : Kim(l,,)dm = (), i= 1,2,. ..,iV

(14a)

; K,m@J)cm + ~ K,m@,2)dm = (), i = 1,2,. .*,M
m=1 m=l

(14b)

where from’ the definition of the inner products associated

with the Fourier transform defined by (2), the matrix

elements are

(15a)

(15b)

(15C)

(15d)

The right-hand sides of (10) can be eliminated in Galer-

kin’s process via the application of Parseval’s relation,

because the inverse transforms of E=, ~, and ~x, ~,, i.e.,

E.j E, and Jz, J., are nonzero only in the complementary
regions in the (z,z) plane at. y = d..

The simultaneous equations (14) are now solved for the

wavenumber k, by setting the determinant of the coeffi-

cient matrix equal to zero and by seeking the root of the

resulting characteristic equation. The resonant frequency

of the rnicrostrip resonator shown in Fig. 1 is derived from

the obtained value of ko.

The accuracy of the solution can be systematically

improved by increasing the number of basis functions

(M + N) and by solving larger size matrix equations.
However, if the first few basis functions are chosen so as

to approximate the actual unknown current distribution

reasonably well, the necessary size of the matrix can be

held small for a given accuracy of the solution, resulting

in the numerical ei%ciency. Hence the choice of basis func-

tions is important from the numerical point of view.

In actual computations for the dominant mode, ~.l and

~Zl have been chosen to be

Jz,(n,p) = Jar, ( 16a)

J.,(n,p) = J3(n)74(8) (16b)
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where

2 sin (lnw)
~l(n)= ~w +&

{
Cos (k.w)

n n

2 sin (t.w) 2[1 – Cos (inw) ]
—

i.w
+

(knw)’ 1

J,(p) =
– ‘x Cos (fIt)

(pZ)’ – (7/2)’

73(n) =
2U sin (t.w)

(inw) 2 – 7r’

Cos (/31) sin (@l)
J,(n) = ~ – —

(@l)’ “

Note that (16) are the Fourier transforms of Jzl(z,z) =

J1(z)J’(z) and J=l(z,z) = J3(z)J4(z) where the fu~ctional
forms of J1–JJ are given in Fig. 2. Higher order J,~ and

~Z~ maybe chosen in a similar manner. It may be worth-

while to mention that the form of ~1 is identical to the

one used by Denlinger [11] for computing the dispersion

characteristics of infinitely long microstrip lines.

It must be pointed out that, although the numerical

computations carried out in this paper are for the domi-

nant resonance mode only, the method developed in this

paper is equally well applicable to the higher order modes.

For computing such higher order resonances, it is only

necessary to use the basis functions appropriate for the

specific mode of interest. For instance, for the resonance

of the second order in the z direction, cos (mz/1) /1 may be

used instead of J2 shown in Fig. 2.

Before ending this section, some of the unique features

of the present method will be summarized.

1) The spectral method is numerically simpler and

more efficient than many space-domain methods, pri-

marily because in the present method solutions are

extracted from algebraic equations rather than from

coupled integral equations of convolution type. Further-

more, the- Fourier transforms of Green’s functions Gil,

(%, ~.zl, and ~’z in (10) have simple closed forms. On the

other hand, in the space-domain methods, the Green’s

functions are inverse Fourier transforms of all, etc., and

hence are numerically much more difficult to evaluate

[12]. For instance

/

m

. G,,(n,f?) exp ( –jp I z – z’ 1) do.
o

2) Although numerical computation of Ki~(l ‘1), etc.,

requires the evaluation of the infinite summations of

infinite integrals, as shown in (15), they can be efficiently

*;’ -’VW
Fig. 2. Forms of assumed current distributions.

obtained after truncating these infinite summations and

integrals at some finite points, because the integrands in

(15) decrease quickly. For instance, for ~.1 and ~Zl in

(16), they decay as fast as (~.w)-3 and (81)-3.

3) As pointed out earlier, the solution in the present

method can be systematically improved by increasing the

number of basis functions and solving a larger size matrix.

4) The physical nature of the field corresponding to

each mode is directly incorporated in the process of solu-

tion via the appropriate choice of basis functions.

III. RESULTS AND DISCUSSIONS

Before presenting the numerical results and experi-

mental data, it should be noted that the structures used

for both numerical computations and experiments through-

out the rest of this paper are scale models of millimeter-

wave integrated circuits. In practice, after the circuit is

designed and tested at low frequencies, a miniature struc-

ture for millimeter-wave integrated circuits may be ob-

tained by reducing all the dimensions of the circuit struc-

ture while keeping the ratios of all the dimensions to the

wavelength constant. The value of the relative dielectric

constant of the substrate is assumed to be unchanged in

these two frequency ranges. Since the field distributions

in both the scale models and the actual millimeter-wave

circuits constructed in this manner are the same, we are

solving the field problem of millimeter-wave integrated

circuit structures even though the actual operating fre-

quencies are in the UHF range.

Numerical computations have been carried out for the

resonant frequencies of microstrip resonators using a

CDC G-20 computer which is about ten times slower than

the IBM 360/75. Each matrix element in (14) such as

Ki~fl’lJ has been computed accurately up to five significant

digits or better. To test the convergence of the present

method, the resonant frequency has been calculated for

two choices of matrix size: 1) N = 1, M = O; 2) N =

M = 1. In case 1), only the axial component J.1 of the

resonator current is retained. Fig. 3 shows some typical

results obtained by choices 1) and 2). It is clear that the

two sets of values are very close except for very wide

resonators in which the JZ component is physically ex-

pected to make more significant contributions. Some test

calculations that include higher order basis functions
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(N = M = 2) gave so small a difference from the N =

M = 1 case that the results were almost indistinguishable

on the graphical figures. In the rest of this paper only the
results from the N = M = 1 case will be used.

Fig. 4 shows the resonant frequency versus the length

of the resonator. Other theoretical results are based on the

open-ended quasi-TEM as well as the parallel-plate trans-

mission line models. The latter is of width 2W and thick-

ness d, has magnetic side walls, and is filled with a medium

of dielectric constant c,. In both of these approximation

models, the resonant frequency was computed from the

length of 2(1 + Al) where Al = 0.3d is the hypothetical

extension of the line to account for the end effect [7].

The experiments’ have been conducted using the strip

of thickness 0.254 mm that is negligibly small compared

to other dimensions. The loaded Q of the resonant circuit

was maintained around 1450. As seen from Fig. 4, the

agreement between the experimental data and the results

computed by the present theory is extremely good. In

1 The author would like to thank W. W. Snell, Jr., of Bell Labor*
tories, Holmdel, New Jersey, for furnkhhg the experimental data.

TABLE I

RESONANT FREQUENCY VERSWS LOADED Q (21 = 1O-CM RESONATOR)

Loaded Q Resonant Frequency (MSZ)

37 708.0

106 730.6

466 742.3

688 743.0

1509 746.0

1735 746.4

2334 747.0

10000 753.0*

Present theory 752.4

Note: * is the extrapolated value.
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Fig. 5. Resonant frequencies of microstrip resonators with various
structural parameters.

order to study the effect of the loaded Q of the circuit on

the resonant frequency measurement, one of the resonators

used in Fig. 4 was loaded differently and the resonant fre-

quency was measured as a function of loaded Q. The

results summarized in Table I show that the numerical

results are even closer to the resonant frequency of an

extremely loosely coupled resonator—in fact, the fre-

quency of an essentially uncoupled resonator.

Fig. 5 shows the resonant frequencies of microstrip
resonators with various structural parameters. As ex-

pected, the resonant frequency is lower for the resonator
of the same dimension but with the substrate of higher

dielectric constant.

Finally, the typical computation time using the N =

M = 1 case was about 200 s/structure although the time

is longer for narrower resonators.

IV. END EFFECT

To date, the end effect of the open-ended microstrip

lines has been studied with the quasi-static approximation

[5]-[7]. However, at higher frequencies, say millimeter-

wave regions, the quasi-static approximation may- not be
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accurate. In this section, the resonant frequency data of

the microstrip resonators have been used for estimating the

end effect at the open ends of microstrip lines using the

full-wave theory.

First, compute the dispersion characteristics [13], [14]

of the infinitely long microstrip line with the same cross-

sectional structure as the microstrip resonator. From the

dispersion relation the guide wavelength k, is derived at

the resonant frequency jc of the microstrip resonator of

length 21.

Now, consider the hypothetical open-circuited micro-

strip resonator whose structure is identical to Fig. 1

except that the length is 2Z instead of 21. The hypothetical

length 2Z is determined from the resonant condition of the

open-circuited line 2Z = hg/2. The hypothetical extension

of the microstrip line, which accounts for the end effect, is

given by Al = j – 1.
Fig. 6 shows that the values of Al are considerably

smaller than those computed by the quasi-static approxi-

mation. It is conjectured that these smaller values maybe

caused by the reduction of the capacitive susceptance due

to the lumped inductance associated with the disturbance

in the current components at the strip ends. Fig. 7 shows

that when the length 1 is increased, Al first decreases be-

cause of the decrease of mutual coupling between two

ends. However, when 1 is further increased, A.? increases.

This phenomenon occurs probably because for large 1 the

resonant frequency decreases and hence the situation

O 5r

I
d=127cm
h= S89cm
.3=775 cm

04-~
‘0,-ea

c,=96 =IOcm

/.’————

02~Ls

2Wld

Fig. 6. End effect versus the width of strip.
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r3=775cln
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$: .c:-
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4 s 12 16 20
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Fig. 7. End effect versus the length of strip.

approaches the static limit where the

larger, as shown in Fig. 6.

V. CONCLUSION

951

Al value is much

A new efficient method has been developed for comput-

ing the resonant frequencies of rectangular microstrip

resonators. The formulation is based on the rigorous full-

wave analysis. The characteristic equation has been

obtained via the application of Galerkin’s method in the

spectral domain. The numerical results were compared

with those derived from other theoretical and experimental

data. The agreement between the experimental results

and the data computed from the present method was

extremely good.

Further, the results for microstrip resonators have been

used for estimating the end effect of the microstrip lines.

The estimate has been compared with the values obtained

by the quasi-static theory.

Finally, it should be mentioned that the operating fre-

quency in the paper was assumed to be below cutoff of

the shielding waveguide. When this is no longer the case,

all the formulas given in this paper still hold. However,

in such situations the ~’det” in ( 1 Id) possesses zeros on

the real axis in the complex@ plane. Hence because of the

poles of &l, etc., the matrix elements K~ncl l), etc., now

become complex, and the characteristic equation for the

resonant frequency is satisfied only with the complex ko.

Physically, this situation corresponds to the finite value of

resonator Q due to the coupling to the waveguide modes.

It is planned in the future to obtain more data for

various structural- parameters and to extend the present

method to the case where the shielding’ walls are removed

or the operating frequency is above waveguide cutoff.
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Short Papers

Analysis of Lossy Inhomogeneous Waveguides

Using Shooting Methods

R. E. McINTOSH, SENIOR MEMBER, IEEE, AND ~. J. TURGEON,

STUPENT MEMBER, IEEE

Absfracf—Shooting methods are used to analyze rectangular

waveguides containing inhomogeneous lossy dielectrics. The tech-

nique obtains the electromagnetic fields inside the waveguide by

solving Maxwell% equations using trial and error procedures to match

the boundary conditions at the conducting waveguide surface. Dis-

persion and attenuation curves are obtained which show how con-

tinuous dielectric inhomogeneities and losses affect the transmission

characteristics of these waveguides.

I. INTRODUCTION -

The many applications of inhomogeneously loaded waveguides in

microwave engineering has resulted in a need for methods of cal-

culating the transmission characteristics of the waves that propagate

in such waveguides. A nt.pnber of solution methods have been devel-
oped to analyze such problems, most of which are numerical, since
only a few inhomogeneous cases can be solved in closed form [1].

Most of the methods developed are restricted to lossless inhomo-
geneities. Some of the earlier ones [2>[4] treat waveguides con-

taining one or two slabs of Iossless dielectric. Further developments
include Galerkin’s method and modification thereof [5], [6], analyti-
cal approximations [7], Rayleigh–Ritz optimization [8], [1 j, finite

difference [9], finite element (especially helpful for arbitrary wave-
guide cross sections ) [10]–[12], computer iterations [13], vector

variational [14], and shooting methods [15].
Rectangular waveguides containing Iossy dielectric slabs have also

been analyzed [13], [16]-[18]. Perhaps one of the more elegant
papers in this area was written by Gardiol [18]. Using a matrix

formulation, he treated general waveguides containing linear, in-
homogeneous, lossy, and anisotropic slabs. In principle, his formula-

tion is valid for solving waveguides which have any number of slabs
extending across them. However, in practice, the number of computer
operations prohibits the computation of waveguide propagation
constants (even for the isotropic case ) when a large number (e.g.,
more than 25) of slabs are needed to model the medium contained

inside the waveguide. This limitation is not very important in those

situations where the medium is accurately modeled by a few step
discontinuities but it can be serious when treating certain geometries
with continuously varying media.
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Fig. 1. Rectangular inhomogeneous 10SSY waveguide with width u
and height b. The. permittivity e(z) = e’(z) — je” (z j is a function
of the spatial coordinate s.

In this short paper we present an approach which differs from
Gardiol’s in the technique used to solve Maxwell’s equations. We
show that the propagation characteristics of a rectangular waveguide
loaded with an isotropic, lossy, and inhomogeneous dielectric as

shown in Fig. 1 can be found by applying shooting methods directly
to the field equations. This technique has the advantage that the

permittivity does not have to be approximated by a small number
of slabs. The field component are also available for printout and

display since they are computed in determining the dispersion curves.
The complex propagation constants for an inhomogeneous rec-

tangular waveguide are obtained by solving the first-order differential

equations (Maxwell’s equations ) using Hammings stable method
[19], started by a Runge-Kutta-Gill method. The ability to select

the size of the spatial increments used in the iteration procedure
further allows this technique to yield good accuracy for higher order
modes and strong inhomogeneities of the permittivity [15],

In Section II, Maxwell’s equations are formulated appropriately
for a rectangular geometry, and a description of the solution tech-
nique is given when the inhomogeneity can be expressed as a function
of one spatial coordinate. An example is presented in Section III to
illustrate the speed and accuracy of the method.

II. THEORY

Maxwell’s equations contain all of the necessary information to

obtain the wave propagating characteristics of waveguides. We need
only solve them inside the waveguide of width a and height b shown
in Fig. 1 subject to the appropriate boundary conditions. I?or one-
dimensional inhomogeneities in the z direction, the electric field


